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ABSTRACT
We have designed a cubic spline wavelet decomposition for the Sobolev space HZ(I) where
I is a bounded interval. Based on a special “point-wise orfhogonality” of the wavelet basis
functions, a fast Discrete Wavelet Transform (DWT) is constructed. This DWT transform
will map discrete samples of a function to its wavelet expansion coeflicients in O(N log N)
operations. Using this transform, we propose a collocation method for thé initial value
boundary problem of nonlinear PDE’s. Then, we test the efficiency of the DWT transform

and apply the collocation method to solve linear and nonlinear PDE’s.
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1 Introduction

Wavelet approximations have attracted much attention as a potential efficient numerical
technique for the solutions of partial differential equations [1] - [6]. Because of their advan-
tageous properties of localizations in both space and frequency domains (8] - [10], wavelets
seem to be a great candidate for adaptive schemes for solutions which vary dramatically
both in space and time and develop singularities. However, in order to take advantage of the
nice properties of wavelet approximations, we have to find an efficient way to deal with the
nonlinearity and general boundary conditions in the PDE’s. After all, most of the problems
of fluid dynamics and electromagnetics, which involve solutions with quite different scales,
are governed by nonlinear PDE’s with complicated boundary conditions. Therefore, it is our
objective here to address these issues when designing wavelet approximations and numerical
schemes for nonlinear PDE’s.

We will present a new wavelet collocation method designed to solve nonlinear time evo-
lution problems. The key component in this collocation method is a so-called “Discrete
Wavelet Transform” (DWT) which maps a solution between the physical space and the
wavelet coefficient space. The wavelet decomposition is based on a new cubic spline wavelet
for HZ(I) where I is a bounded interval [11]. In order to treat the boundary conditions an ex-
tra boundary scaling function ¢;(z) and a boundary wavelet () have been used. A special
“pointwise orthogonality” ( see(3.7)) of the wavelet functions t;(z) results in O(NlogN)
operations for the DWT transform where N is the total number of unknowns. Therefore, the
nonlinear term in the PDE can be easily treated in the physical space, and the derivatives of
those nonlinear terms then computed in the wavelet space. As a result, collocation methods
will provide the flexibility of handling nonlinearity (and, also the implementation of various
boundary conditions) which usually are not shared by Galerkin type wavelet methods and
finite element methods.

The rest of this paper is divided into the following five sections. In section 2, we introduce

the cubic scaling functions @(r), ¢5(z) and their wavelet functions (), ¥p(x). A multires-



olution analysis (MRA) and its corresponding wavelet decomposition of the Sobolev space

H3(I) are constructed using @(z), ¢s(z) and (z),¥s(z). Then, we show how to construct

a wavelet approximatioi} f.(;r fﬁuﬁé’ti'bh m Sobo]ev sp;éé HVV'VZ(I)iwhich thé solutions of PDE’S
will belong to. In Section 3, we discuss the fast discrete wavelet transform (DWT) between
functions and their wavelet coefficients. In’Section 4, we discuss the derivative matrix D asso-
ciated with wavelet interpolations. In Section 5, we present the wavelet collocation methods
for nonlinear time evolution PDE’s. In Section 6, we give the CPU time performance of the
DWT transforms and the numerical results of the wavelet collocation methods for linear and

nonlinear PDE’s; and a conclusion is given in Section 7.

2 Scaling functions ¢(z),¢)(z) and wavelet functions

P(z), bo(z)

Let I denote any finite interval, say 7 = [0, L] and L is a positive integer (for the sake of
simplicity, we assume that L > 4), and H?(J) and HZ(I) denote the following two Sobolev

spaces with finite L? norm for up to the second derivatives, i.e.
H}(I) = {f(z),z € I ||fV]]z < o0,i =0,1,2) (2.1)

HA(I) = {f(z) € H¥(D)| J(0) = (0) = f(L) = ['(L) = 0}. (2.2)

It can be easily checked [7] that H2(]) is a Hilbert space with the inner product

< f,g>= /] F(2)g"(z) dz, (2.3)

thus,
WAl = V<77 > 2.4)

provides a norm for HZ(I).
In order to generate a multiresolution for Sobolev space HZ(I), we consider two scaling

functions, an interior scaling function ¢(z) and a boundary scaling function ¢,(z) (see Figure

N
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o) = Naw) = 3 (7) (1P = 0% (25)
by(z) = %xi _ %xi . %(.z 13 - -Z(:L‘ ) (2.6)

where Ny(z) is the 4th order B-spline [13] and for any real number n

’n__{x" ifz2>0

= : .
+ 0  otherwise.

In a pair they satisfy the following two-scale relationship,

Lemma 1
o) = PO
B) = Babi(e)+ kz:mazx—k) @)

We summarize some properties of ¢(z) and @y(z) in the following lemma.

Lemma 2 Let ¢(z) and ¢;(x) be defined as in (2.5) and (2.6), then we have

(1) supp(é(z)) = [0,4]; (2.8)
(2) supp(¢s(z)) = [0,3]; (2.9)
(3) ¢(z), du(z) € H3(I); (2.10)
@) $0)=—¢0) =3 ¢ =0 4 =@ =5 @I
() (1) =6(3) = 5, 62) = 2, #(1) = 15, (D) = ¢ (2.12)
For any j, k € Z, we define
$ix(z) = 62z — k), bu(z) = $s(2'2). (2.13)

And for each j, let V; be the closure under norm [||f||| in (2.4) of the linear span of
{$;n(x),0 < k < 2L — 4,84 (z), ¢ ;(L — z)}, namely

V; = span{¢;(z),0 < k < VL — 4, ¢ (z), b ;(L — )} (2.14)

3



Theorem 1 Let V},j € Z* be the linear span of (2.14), then V; forms a multiresolution
analysis (MRA) for HZ(]) equipped with norm (2.4) in the following sense
HWwcWcV,C- g
(ii) closyz(Ujez+ V;) = H3(1);
(i) Nyeze V; = Vs and |
(iv) for each j, {@;x(z) = ¢(x — k), dp;(x) = $4(2'x), ¢ ;(L — z)} is an unconditional
basis of V;.

Proof. The proof for (iii) and (iv) is straightforward and omitted here. The proof for
(i) follows from (2.7) in Lemma 1. In order to prove (ii), we recall a familiar result on
interpolation cubic spline approximation for smooth functions taken from [14] and rewritten

for the proof of our theorem.

O

Lemma 3 Let 7 be the partition given by r; = 1h,0 <1 <n,h = Q’%“l and s(z) be the cubic

spline interpolating f(z) € C*[a,d] at all points in 7, -

s(ti) = f(z:), 0<i<n,

J(a) = f(a), () = F/(b). (2.15)

Then s(z) uniquely exists and

15T — O] 2 < e ||f@| 24, r=0,1,2,3 (2.16)
%aﬁ = %762 = gaEB

where ¢g =

Proof of (ii) of Theorem [ Let h = 5;, a = 0 and b = L. Consider f(z) € C5°(0, L), Since

Ce(0, L) C CY0, L] n HE(0, L), by Lemma 3, there is an unique cubic spline corresponding
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the partition 7 interpolating f(z). From the fact that f(0) = f(L) = f'(0) = f'(L) =0, we

have s(z) in V; and then

L'-4
s(z) = co1dp () + Z cedir(z) + cL_3c/5b'j(L - z) (2.17)
k=0
such that
s(z) = flz)), 0<i<?L (2.18)

where L' = 2L, z; = %

27"
Finally, from (2.16) in Lemma 3 with r = 2 we have

lls = £IIl = 11s® = fP| < eof [F911/2%

Therefore, as j —» 00, |||s — f||| — 0. This proves that C§°(0, L) C closyz(Ujez+ Vi).

Then, Theorem 1 (ii) follows from the fact that Cg°(0, L) is dense in H3(0, L).

To construct a wavelet decomposition of Sobolev space HZ(I) under the inner product

(2.3), we consider the following two wavelet functions 4(z), ¥s(z) (see Figure 2) ,

P(z) = —gqﬁ(Zw) + %(b(?f -1) - -:;-QS(Z:E -2)eW (2.19)
() = 2gu(2e) - o(20) € Vi (2:20)

It can be verified that
P(n) = ¢p(n) =0, for all n € Z. (2.21)

Equation (2.21) will be important in the construction of the fast DWT transform later. And,
equations (2.19) and (2.20) imply that 1(z) and () both belong to V;. As usual, we define

the dilation and translation of these two functions

T/)jvk(r) :?/)(ZJ,c—k), ] 2 0, k:o’...,nj_:}, (2.22)

[



P () = ho(2z), ¥ () = (P (L ~ 7)) (2.23)

where n; = 27 . For the sake of simplicity, we will adopt the following notations
Pia(@) = Bi(@), i = U, (). (2.24)
So when k = —1,n; — 2, ;(x) will denote the two boundary wavelet functions, not the

usual translation and dilation of ¢(z): -

Finally, for each j > 0, we define

Wj = closyz < (), k==1,---,n; —2> . (2.25)

Theorem 2 The W;,7 > 0 deﬁned in (2.25) is the orthogonal compliment of V; in V4,
under the inner product (2.3), i.e

(1) Vis1 = V; @ W, for j € Z+. Here @ stands for Vi LW, under the inner product (2.3)
and V;;y = V; + W;. Therefore,

(2) W; LW, j € B+

(3) H3(I) = Vo ®jez+ W;.
Proof. (1) We only have to prove V; @ W; for j = 0, namely, for 0 < I < L-4,0<k<L-3,

<dlz—1)pla—k)> = 0 (2.26)
<plz—1),h(z)> = 0 (2.27)

< dyl(z),hlz—k)> = 0 (2.28)

< do(z),h(z) > = 0. (2.29)

Integrating by parts twice in (2.26) and using the fact that ¢(z), ¢(z) € HZ(I) , we have
<dlz—1),h(z—k)> = / "(z — Dy"(z — k) da
= e -0 Dk~ [ 9O - e k) ds
— _/0 Oz — I)y'(z — k) dr
= 49— e — R+ [ 90— (e - ) de
= | " 60z~ lyi(z — k) da.

6
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Using equation (2.21) and the identity

¢z =§g<> 1)’8( - j)

where 6(z) is the Dirac-é function, so we have

< bz —1),b(z—k) > =%§m) $( = (k= 1)) = 0.

Equations (2.27) - (2.29) can be shown similarly to be true . So (1) follows from (2.19)
and (2.20) and the fact that dimV; = 2L — 3 and dimW; = 2L and dimVjy1 = 2L -3 =
(2L = 3) + 2L = dimV; + dimW;;

(2) follows from (1);

(3) follows directly from Theorem 1 (ii).

As a consequence of Theorem 2, any function f(z) € H¢(I) can be approximated as
closely as possible by a function f;(z) € V; = Vo @ Wo & Wy --- @ W, for a sufficiently large

7, and f;(z) has an unique orthogonal decomposition
fi@)=fotgo+a+ - +g; (2.30)

where fO e%agi € W;',O S t SJ



Apprbxim;{ion for function in HZ%(I)
Consider the following two functions
m(z) = 2z, — 3a:+ + 7x+ —(x 1% (2.31)
m(z) = (1- J:)+. (2.32)

For any function f(z) € H*(I), by the Sobolev embeddmg theorem we have f(z) € C'(I)

and, therefore we can define the following boundary mterpo]atxon L;f(z),7>0
L;f(2) = caxm(22) + ona(22) + aam (2(L — 7)) + cma(2(L - ) (2.33)

such that

Lif(0)=f(0), L,f(L)=fL) (2.34)

L;f'(0)=f'(0), L,/ (L)=/[(L). (2.35)

It can be éasi]y verified that, in order to have Iy ; f satisfy conditions (2.34) - (2.35), we

have to take

£(0)

3 : o -
M =5 §f(0)a az = f(0) , (2.36)
f(Ly 3

ay = =t = Sf(L), e = (D).

In many situations we do not have the values of derivatives f/(0), f'(L). However, they
can be approxnnated by finite d)fferences using only the values of f(x). To preserve the

correct order of accuracy for a cubic spline approximation, we suggest using the following

approximations
(0 = %ickf(kh )+ O(h*) (2.37)
k=0
f(L) = - chf(L kh) + O(h).

where h > 0 and p > 3. For p = 3, if we take

11 .
Co = ——, Cq =3

6
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3 1
Cy = ——, C3 = —.

2 3
then s = 3 in (2.37), and thus, equation (2.35) is satisfied within an error of O(h?). Corre-

spondingly, the coefficients ay,1 < k < 4 for I, ;f(z) become
P
ar =) f(kh), = f(0) (2.38)
k=0
P
aa ==Y Gf(L—kh),  au=[(L)
k=0

where

1 3 Ck
Caz(mCO_E)a C;c=2j+1h, 1SkSP

Now we have f(z) — L ;f(z) € H2(I) and the decomposition (2.30) can be applied for
it. Therefore, we can find an approximation f;(z) for any function f(z) € H?(I) as close as

possible, provided that j is large enough, in the form of

fi@)=Lf+fotg+a - +g; | (2.39)

where fo(z) € Vo, i € Wi, 0 <0 < 7.

3 Discrete Wavelet Transform (DWT)

In this section, we will introduce a fast Discrete Wavelet Transform (DWT) which maps
discrete sample values of a function to its wavelet interpolant expansions. Such expansion
with the wavelet decomposition will enable us to compute an approximation of the derivatives

of the function.
Interpolant Operator Iy in Vg

Consider any function f(x) € HZ(I) and denote the interior knots for Vo by
=k  k=1,---,L—1 (3.1)
and the values of f(z) on {xfc_l)},{f;'ll by

I Rt 32



The cubic interpolant Iy, f(z) of data {f,f._l)} can be expressed as follows,

L-4

Ivof(x) = coidu(z) + Z:O ckPor(z) + cpadp(L — x) (3.3)

and Ivgfz.r) interpolates data f,g;r):;k =1,---,L— 1,7 nzﬁnely
Liof(zX) =70 k=1, L—1. (3.4)
Let B be the transform lnatjriglﬂjretween £f-1) = (fl(_l),n-, ,E“_?)T and the coefficient

Cc = (C_],' v ,CL_3)T, i.e.

f-Y = Be (3.5)
where
(_"'_l \
N A
8 3 8
1 2 1
6 3 6
B = e
1 2 1
R G B
6 3 9
\ § 11

In order to obtain the coefficients ¢t, —~1 < k < L — 3 in (3.3), we have to solve the
triadiagondl system (3.5) which involves (5L) operations.

Interpolation Operator I, f in W;

" Similarly, we can define the interpolation operator I, f(x) in W, 5 > 0 for any function
f(x) in H(I). For this purpose, we choose the following interpolation points in 7,

xgﬂ:’“_;_j‘i ~1<k<n; -2 (3.6)
where n; = DimW; = 2/ L.

It can be easily checked that the interpolation points {:rfc_l)} for V5 in (3.1) and {xfcj)}
for W;,7 2 0 in (3.6) satisfy a “point-wise orthogonality” condition.

Point Orthogonality of {azgcj)} for j >2,-1 <k <n; -2,

Pia(zd) = 1

pir(z) = 0, -1<€<n—2ifi20; 1<L<L—1ifi=—1. (3.7)

10
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This orthogonality condition will be crucial in obtaining a fast Discrete Wavelet Trans-

form (DWT).

The interpolation I, f(x) of a function f(z) € HZ(I)in Wj,j > 0 can be expressed as a

linear combination of ¥; x(z) k = —1,-++,n; — 2, namely

and

L, /(=) = f(=0),

n,;—2

L, f(z) = Y. finthir(z)

k=-1

—lgkﬁnj—

(3.8)

2.

If we denote M; as the nj—th order matrix which relates fu) = (fj,_‘], e ,fj,,ZJ_Q)T and

£0) = (f(zY), -, f(a¥),

where

N7, then

£0) = M,E0)

1
11 14 1
s vORE St v
1 1
14 l 14
-1 1
14
_1
14

(3.9)

-1
13
1)

The solution of the coefficients fjvk, —1 < k < nj—2 again involves solving tridiagonal system

(3.9) which costs (5n;) operations.

Now let us assume that the values of a function f(z) € H}([) are given on all the inter-

polation points {xgj)} defined in (3.1) and (3.6), we intend to find the wavelet interpolation

Pif(x)eVodWoa Wi---@ W, for J 20, ie.

Pif(z)

11

L-4 .
f_l,_1¢b(:r) + Z f_l,k¢k($) + fo1,0-30(L — x)
k=0

J n;=2

SIY fistin(@)]

1=0 k=-1

J
fa(e) + z_jofj(x)

(3.10)



W

where
n;—2

f—l (:E) = IVOf(:E) € %7 fj(m) = Z .f}.k¢j.k(x) € Wh] Z Oa

k=-1
and

Pof(ei”) = f@a"), 1<k<L-1
PiEP) = J@&),  §20,-1<k<n -2 (3.11)
Let usrdel}ote f = (FCED,£O ... fUNT the values of f(z) on all interpolation points, i.e.
fo0 = {0k,
10 = @RS, P20
and f = (fC1,£© ... T the wavelet coefficients in the expansion (3.10)
f0 = {faadic)
9 = {fuhilh, =0
The following algorithm provides a recursive way to compute all the waveletrcoefﬁcients
f, and al;o £he wavelet expansion (310) can be expanded as neéded to mclude higher level

wavelet spaces W;, J +1 < j < J' by adding only terms from the higher wavelet spaces, i.e.

Wi, -, Wo
DWT transform

f —f

This direction of transform is straightforward by evaluating the expansion (3.10) at all

the collocation points {x,(cj)},j > —1 to obtain f. The “Point-wise Orthogonality” (3.7)

of the interpolation points and the compactness of suppy;,(z) can be used to reduce the
nﬁrnrlbwer of evaluations. 7
Number of :Oﬁerdrtionsz

Let N be the total number of collocation points and N = (L— 1)—{—23’:0 n; =2*"L-1.Tn
the evaluation of 'ij(wfcj?), values of ¥(z) and ¢(z) at dyadic points 2%,0 <kE<2L,3>0

are needed and they can be computed once for all for future use.

12
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Recalling (3.10) and the “orthogonality condition” (3.7) of the interpolation points, we

have

Pif(ei ) = fale™),  1<k<L-]

which needs 7(L — 1) (flops).

For each 0 < j < J, to compute PJf(a:ﬁ”), ~1 £ k < n;—2,it needs (55 +12) *n; (flops).
Thus, it takes 7(L — 1) + T7_o(5] + 12)n; = 27¥'L(5J + 7) + 5L — 7 < TNlogN(flops) to
compute the vector f.

A

f—f

Recalling that £ = (£-1,£© ... fUNT we proceed to construction of P,;f(z) in the

following steps.
Step 1

Define
. L-4 .
for(2) = Iyof ™D = foy _1du(x) + Y forwde() + fori-3de(L — ),
k=0

so f_i(z) interpolates f(r) at the interpolation points xfc_”, —1 <k <L -1, namely

fa(@TD) = ) , (3.12)
Step 2
Define
fol#) = Lo (£9 = (Iyo /)®) = 3 foutou(z) (3.13)
{=—1

where (Ivof)® = {Ivof(z{)}1o7
As a result of the “point-wise orthogonality” conditions (3.7) of the interpolation points,

we have wo,l(wﬁ—l)) =0,-1<1<ny—2,1<k<L-1,thus

folel™y=0, 1<k<L-1.

13
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So we have
fa@N) + fo(zl) = fael) =Tef @) = fY) 1<k<L-
@) 4 fo=?) = Lol + (1 - MoH®) = £ = (). (3.14)

Equatlon (3 14) implies that functlon f_ (z) + fo(x) actnally mterpolates f(z) on both
interpolation points {.’Bk )} for Vo and the mterpolatlon points {:c,c )} for Wp.

Step 3

Generally, we define for 1 <3 < J

fi(g) = TLu,(fD = (P )W) (3.15)
= i fiwhin(=)- (3.16)
k=-1

where (P /)Y = Pyaf(e), ~1 Sk <my =2

Again, as in step 2 we can verify that function f_i(z) + fo(z) + -+ + f;(z) interpolates
function f(z) on all interpolation points {:cfc_])},--- {.ri’)} Especially, for j = J we have
P, f(z) = f-1(z) +fg(z) + -+ -+ fs(z), which will satisfy the required interpolation condition
(3.11).

Number of Operations.

For j = —1, the number of operations to invert (3.9) using Thomas algorithm to obtain
{f 1)} is 5L(flops‘) For 0 <j<J, the cost of computing the coefficients (’) in fi(z) =

I,;J (f9) — (Pj“lf)(])) = Y_1<k<n;—2 f]kzpjk(x) consists of three pgrts: (1) evaluation of

(P;o1 )W) = {Pi-1 f(z)} = (55 +T)n;(flops); (2) calculating the difference fU0) — (P;_, f)0)

- n;(flops); (3) inverting the matrix Mj in (3.9) - 5n;(flops), totaling (57 + 13)n;(flops).
So the total cost of finding f=5L+ ¥ o(57 +13)n; = £7_0(57 +13)27L < 6Nlog N where

again N =241 — 1.

Now let us go back to (3.10) to see the meaning of the wavelet coefficient {f;x} in the

finite wavelet decombosition of space HZ(I) for function f(:v) For this purpose, we first take

14
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a look at the wavelet coefficient in the finite wavelet decomposition of space L*(]), i.e. in
the decomposition V; = Vo @ Wo @ Wy --- @ W;. The orthogonality here is in the sense of L?
“norm not of HZ(I) norm. For simplicity , we still use the notation #(z) and () to denote
the scaling function and the wavelet function for this decomposition, while keeping in mind
that they have different definitions from those of HZ(I) . Then, we can write the wavelet

coefficient f;; in the finite decomposition as,

fi = [ f@Wu(a)d

where {13} is the dual wavelet basis of {1;x} in Wj. l.e.{¥};} is such a basis of W; that

/‘/’?k(l’)%l(w) dz = &,

where §;; is the Kronecker symbol.

Using a similar method in [12], we can prove that

nj )
i =D ol it (3.17)
=1
where ag) satisfies the estimate
la®)| < KAF-H (3.18)

with 0 < A < 1 and K a constant.
In order to estimate [ fi, we quote the following theorem from Meyer’s book [9].
Theorem A Let g(x) be compactly supported, n times continuously differentiable and have

n + 1 vanishing moments:
o0
/ zPg(z)dr =0, for 0 < p < n.

Let a,0 < o < n, be a real number that is not an integer and f(z) € L%. Then f(z) is
uniformly Lipschitz of order a over a finite interval [a,] if and only if for any k € Z and

D€ Z such that 277k € (a,b),
|/f(:v)g(2jx — k) dz| = O(27 (D)9 as j — oo. (3.19)

15



From Theorem A, we can claim that the absolute value of the wavelet coefficient | fix]
depends upon the local regularity of f(z) in the neighborhood of the abscissa 277k. More
precisely, if 277k € (a,b), the decay of |f;:| depends upon the Lipschitz regularity of f(z)
over the interval [a,b], as the resolution 2’1 increases. This property of the wavelet coeffi-
cients allow us to detect the locrartioq of thé singularity of the function and, then, provide a
general knowledge of the distribution of wavelet basis functions whose coefficients are larger
in magnitude than a given threshold. The detail can be referred to [11]. In the framework
of L?, the wavelet function 1(z) has at least 1 vanishing moment. Hence the property of the
wavelet coeflicients mentionéd above is always valid.

Now we return to the wavelet coefficients {fjk} in (3.10). It can be easily checked that

sin % 3w

)46’7‘.

@(w) = §(2 — cosw)(

-[E

Hence 3(0) = 2, which implies that 1 has no vanishing moment at all (see Figure 3) . Since
the wavelet decomposition we considered here is in the space HZ(I), therefore, the decay
property for the wavelet coefficients fjk ought to be related to the vanishing moments of the

second derivative of 1(z) (seee Figure 4), not to those of ¥(x). We shall illustrate this more

precisely.

Let {17,} be the dual basis of {1} in W, (recalling that the space we consider here is
H3) . It can be proven that for W3, (3.17) and (3.18) still hold. Then we have

foo= [ @)@ () da. (3.20)

Notice that spline wavelets 1 (x) and 14(x) defined by (2.19) and (2.20) are continuous
and their second derivatives have 2 vanishing moments. Then applying Theorem A to the
second derivatives of ¢)(x) and ¥(z) (namely, by taking g(x) in Theorem A to be ¥"(z) and
Yy () respectively); we can prove the foﬂowing. .

Lemma 4 Let 0 < a < I and f € HZ(I). If the second derivative of the function [ is Hélder

continuous with exponent a, at z¢ € I, i.e.
(&) = ["(20)] < Cle — 2ol € (20 = 6,20+ 6) C I
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for some § > 0, then for any k € Z,j € Z* such that 277k € (zo — §/2,20 + 6/2),

[fiel = 0@27E+), as j— oo, (3.21)

Proof. We have , since % and 1, defined by (2.19) and (2.20) are continuous and their
second derivatives have 2 vanishing moments, by Theorem A,

il = [<hon>l< X Pl <fva>l+ X @< fivi>

'2-jIE(xo—5,a:o+5) 2"”@(1‘0—5.:!:0-&-6)
< Y KRty o S gAIFHE = o(2m (o)
2-ile(zo—6,20+5) li-k|>2i %

where C in the first but last equation is a constant which depends on the second derivative
of f(x).

0

Lemma 4 implies that the wavelet coefficients fjk, j >0, still reflect the singularity of the
function to be approximated. In practice, when we solve PDE’s using collocation methods,
we often use the values of the functions, not their derivatives. Therefore, in order to use the
wavelet coefficients to adjust the choice of wavelet basis functions, we have to establish a

relation between the magnitude of the wavelet coefficients fj,k,j > 0 and f(z). Let us first

state the following result on the inverse of tridiagonal matrix from [15].

Lemma 5 Let A be a nxn tridiagonal matrix with elements az, a3, - - -, @, on the subdiagonal,
by, by, -+, b, on the diagonal and c;,cs, - ,c, on the superdiagonal, where a;, ¢; # 0. Define

the two sequence {u,.}, {vm} as follows:

l
Ug = 0,”1 = laum = _E_(am—-lum-—2 + bm-—lum—l) m 2 2 (322)
m
1 2 o
Un+1 = 0, Uy = 1, Unm = —(l (bm-H VUm+1 + Cm+2vm+1) m<n-— 1 ('323)
m+1

where a; and c¢,4; are arbitrary nonzero constants. Then A™! = (a4 ;) is given by

LT - N <
wi={zang i3] (.24
a1 G, 1>
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.

Corollary. Let M; be the interpolation matrix in (3.9), then we have the following

estimates on M;' = (i),
K

a'j‘ﬂ

Ia,‘yj} S (325)

where K = 1.1726 and a = 7 4 V192 = 13.928.
We delay the proof of (3.25) to the Appendix.

Theorem 3 Let f(z) € H3(0,L) and M = maz,|f(z)| and I, f(z) be its interpolation in
W; defined in (3.8) and if for e > 0,—1 < k) < ky <nj -2

IfE) <e  for by <k <k,

then define
L, /(z)= > fixtbin(2), (3.26)

—1<k<n; =2,k [ky +1,kz~1)

where | = I(e) = min(%, — 125£). We have

]o;a
L., f(z) — L, f(2)] < C(M)e (3.27)
where C(M) = S (a+ M), K = 11726 and « = 7+ /192 = 13.928.

Proof. From (3.9), we have
FO) = M;lf(i)

where £0) = (f;_1,++, fin,2)T, 19 = (f(2Y)),- -, f(z9,))T, thus

. n, .
Lk = Eak,sf(:vf-’.)g , -1<k<n; -2
=1 '
'So we have
mu_Kz Ww”n (3.28)

For any given € > 0, we take £ = min(n;/2, —log ¢/ log a). For k € [ky + £, k; — £}, using
(3.28) we have

T{E5N])

il £ K i@+ 3

k—ij<t & d k—i]>¢ & k d
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1 1

< Ke Z + MK Z _

Ik—iislak—z‘ Jk— z|>la|k J

1 1 1
< 21&’c[1+(;)+---+( )]+2M1‘[( )1+1+...+(a)n1—f]
R e A JO)

= 21\6—1———(:7)—+2M]X(5) 1_(%)
< 2Ke +2MKe !

a— a—1
= (e

where C' = (a + M).
Finally, we have

K., f(z) = L,f@)l=1 3 fisbiw(@)]

k€[ky+£,ky - 1]

< Yo fikllis@) < Ce > ()l

ke[ky+£,ky~ 4] kelky +&,k2—£]
Note that in the last summation, only three terms will be nonezero for any fixed z, so

we have

L., f(z) — L, f(z)] < 3C"e = Ce

where C' = 2% (a + M). This concludes the proof of the Theorem.

Remark. As a consequence of Theorem 3, the coefficients f‘:j,k of the wavelet interpolation
operator I, f(z) can be ignored if £ e [xffl)ﬂ,xgj)_e] where the function f(z) is less than
some given error tolerance e. This procedure will only result in an error of O(e). For

=107 ¢ = 9,¢ = 1073,/ = 7. In the wavelet interpolation expansion (3.10), L, is
used to interpolate the difference between a lower level interpolation P;_; f(z) and f(z),
i.e. P;_1f(z) — f(z). Thus, the situation mentioned here will occur in larger region of the
solution domain as j becomes larger, avoiding adding unnecessary expansion terms ; ().

This fact will be used in the later section to achieve adaptivity for the solution of PDE’s.

The idea of decomposing numerical approximations into different scales has been previously
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used successfully in the shcok wave computations with uniform high order spectral methods,
where ENO finite difference methods and spectral methods are combined to resolve the

shocks and the high frequencey components in the solution, respectively [17].

We conclude this section with the following result which shows how to use wavelet coef-

ficient to estimate the data interpolated by I,,,.

Theorem 4 Let I, f(x) and f(z) as in Theorem 4. And iffore > 0,—1 < ky < ky; < n; -2
|fix] < €for ky < k < ky,

then

/()] < 3¢ for by +3 <k < k=3, (3.29)

Proof. The proof follows from the definition of L, f(z).

4 Derivative Matrix D

The operation of differentiation of functions , which are given in terms of the wavelet ex-
pansion of (2.39), can be represented by a finite dimension matrix D. Such matrix has been
investigated in [16] for wavelet approximation based on Daubechie’s compactly supported
wavelets for periodic functions. The properties of matrix D, especially of its eigenvalues,
affect very much the efliciency and stability of the numerical methods for the solution of
PDE’s to be discussed in the next section.

We consider the derivative matrix which approximates the first differential operator
Lu=u, (4.1

with the boundary condition

u(L) = 0. (4.2)

ey y



Because of the multiresolution structure of spaces Vj, i.e. V; C V41 and Vo @ Wo -+ @
Wy = Vyiq. We can rewrite the wavelet interpolation u;(z) of (2.39) for function u(z) as a
linear combination of I, j41 f(z) and basis in Vy4,, namely

L'-4
us(z) =L jpu(e) + G dp () + kz—:o Urdrs1 k() + dr-3dsa (L — 7) (4.3)
where L' = 2/%1L and I, j;1u(z) is defined in (2.33).
With the transformation £ = 2’1z, equation (4.3) becomes
L'-4

uy(€) = uy(z) = Lou(€) + d-1¢s(¢) + 2_: B (€) + dr-age(L' = §). (4.4)

Using the notations

and equation (3.5), we have

i=B"1(u—w) (4.5)

where vector u, is defined by

uy, = (Lou(1),0,--+,0,Lou(L' = 1))T € RY-!

and
1 '
Ib,ou(l) = g(CG,C’l,C-’),Cg,O, e ,0)11’ = 7lu'a T € RL -1
1 '
Ib.Ou(Ll - 1) = E(Oa -, 0, —C.f.h —C"z, —'c’h -—CS) = 72u’a T2 € RL -
Therefore, ]
N
0
G=B(I-| : |[)u/'=B"'I'Y (4.6)
0
| 72




I

oo

[ AN

AN e

where Tis the (L' — 1) x (L’ — 1) identity matrix.

To obtain approximation to the derivatives of u(¢), we differentiate equation (4.4) with

respect to £ and evalute at & = k,0 <k < L' e

L'-4
wi(§e) = (Toou)' (&) +a163(E) + D tdi(be) — tin—adh(L' — &)
k=0
= wl) +up(ée) Ok (4.7)

where u} (&) denotes the first term in the first equation and u}(£;) the rest. Recalling the
definition of I ou(€) in (2.33) and coefficients ay in (2.38) withh =land j =J+1,L = L/,

we have : -

([ 2Thodu(t)-3u(0) |\ (&)

_1sp /
o Sipa | [

7 l R
u,.( ) = : =| ! |u=Au (4.8)
Py 0 0

uy (L) L5 (L — k) 55

—2%0_ cu(L — k) + 3u(L)) ) b4 )

with the four L’ 4 ] dimension vectors

& = (2¢h —3,2¢),2¢},26,,0,---,0) € REH
1

52 = —E(ca,c;,cg,cg,o,---,O)GRL'H
1 ,
8 = 5(0,---,0,cg,c;,c;,cg)ERL+1
6 = —(0,---,0,2¢},2c,,2¢,,2¢) — 3) € REH,

On the other hand, ursing (3.5) we have

/0 0 0 0 -~ 0 0 )
1 1 0
! 41 2 1
u3(0) -2 0 3
ubh(1) B 0 -1 0 5
uy(L) -1 0 1
-1 _1
2 4
\ 0 0 0 0 0 0 )
= Hi
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= HB'Tu
= (0, HB7'T,0)u (4.9)

Finally, combining equations (4.8) and (4.9), we have
D4 (0)
u; = DEu:J(l) =D'u (4.10)
Deuy(L')
where the derivative matrix D’ is defined by

D = A+ (0, HB™'T,0). (4.11)

Converting to the z-derivatives, we have

D uy(zo) Deuy(0)
Douy(: 1

" u{(m) _ it Deu-J( ) _ 91y (4.12)
Dqu(CL'LI) DE’LLJ(L’)

where z; = 3747, 0 < < LV
Let D be the upper left L’ x L' submatrix of D, Z—JI;—I-’D will be the wavelet derivative

matrix to differential operator (4.1) with boundary condition (4.2), namely, D will maps the

function values u(zo), u(z1), - -, u(zp_1) to its derivatives u'(zo), w/(z1), -+, u'(z1r-1),
u'(zo) u(zo)
U B B (4.13)
u’(x;,_l) U(xl;’-l)

In Figure 15, we plot the eigenvalues of D for L = 8,J =0,1,2,3 which corresponds to
N = 8,16,32,64. The eigenvalues come in conjugate pairs with two pure real eigenvalues.
The real part of all the eigenvalues are negative and except one eigenvalues, all the rest are

close the imaginary axis.

5 Adaptive Wavelet Collocation Methods for PDE’s

In this section we consider a collocation method based on the DWT transform given in

Section 3 for time dependent PDE’s. Let u = u(z,t) be the solution of the following initial

23



value problem
up + fo(u) = uge +g(u),z €[0,L],t >0
U(O, t) = gO(t) (5 1)
u(Lst) :gl(t) -
u(x,0) = f(z)

where only Direchlet boundary conditions are considered, however, the methods presented

here can also be modified to treat Von Neuman type or Robin type boundary conditions.
We use the idea of method of lines where only the spatial derivative is discretized by the

wavelet decomposition. The numerical solution uy(z,t) will be represented by an unique

decomposition in Vo & Wo @ --- & Wy, J > 0, namely

L-4
us(e,t) = Thgulz, )+ dor o (ds(z) + 3 dor(t)dalz) + drpoa(t)ds(L — )
. k=0
J n;-2

+ 20D dik(t)in()],

7=0 k=—1
J
= ua(®) + 3 (@) (5.2)

where I, ju(z,t) given in (2.33) consists the nonhomogenuity of u(z,¢) on both boundaries,
and the coefficients 4;4(t) are all functions of t. Using the DWT transform, we can also
irdenrtrify the numerical solution uJ(V;VE,rt) by its point values on all collocation (previously
named interpolation ) points, i.e. {.L'{J)} in (3.1) and (3.6), we put all these values in vector
u = u(t), i.e.

u=u(t) = (ul-Y,u ... ,u)T

where ul?) = {u(xfcj),t)},l <k<L-1lforj=-1;-1<k<n;—-2, forj>0.
' To solve for the unknown solution vector u(t), we collocate the PDE (5.1) on all colloca-

tion points, then we have the following semi-discretized wavelet collocation method.
Semi-Discretized Wavelet Collocation Methods

ugy + fo(ug) = ugp + g(uJ)lxzzij), ~1<5<J , ,
7 U'J(O’t) = go(t) 5.3
wil.d) =git) (5:3)
ule =20 =f(e=2)

where ]l <A< L—1forj=-1;-1<k<n;-2 forj>0
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Equation (5.3) involves total (2/*1 — 1)L + 2 unknowns in u two of which will be de-
termined by the boundary conditions and the rest are the solutions of the ODE system
subject to their initial conditions. In order to implement the time marching scheme for the
ODE’s system (for example Runge-Kutta type time integrator), we have to compute the
derivative term in (5.3) fo(us(zl))) and uyyo(z U)Y in an efficient way. Let us only discuss
the first derivative which involves the computation of the nonlinear function f(u(x,t)). For
this purpose we first find a similar wavelet decomposition as (5.2) for f(u;). For a general
nonlinear function f(u), this can be done quite straightforward using the DWT transform

in Section 3.
Computation of f,((xfc’)) = fz(uJ(xff))

Step 1 Given u = (ut=1,u® ... u)7 compute f¥) = {f(ufcj))}, j > —1 and define

f = (f(—1),f(0)’ . ,f(J))T;

Step 2 Compute the wavelet interpolation expansion using DWT transform for f,

falz,t) = Ib,Jf+f—1,—1 )+ Zf—lk +f—1L 3(t) (L — 2)
J n;-2

+ LY finial); (5.4)

7=0 k=-1

Step 3 Differentiate (5.4) and evaluate at all collocation points {zi.j)},j > -1,

L)l = @oul) @)+ () +§:f-1k (@) = fopsa(t)ey(L —2P)

J ni—-2

+ Z[Z fz 1p,l (J))]'

i=0 I=-1
Cost of Computing the Derivatives.

For each single collocation point, it takes 7 + 5(J 4+ 1) = 5J + 12(flops) to compute

fj(JﬁJ)) Therefore, the total cost of computing all derivatives is (5J + 12)N < 5Nlog N.



Again, ¥'(z) and ¢(z) at the dydic points %, 0 < k < 27 can be precomputed once and

for all.

Assuming that Euler forward is used to discretize the time derivative in (5.3), we obtain

a fully discretized wavelet collocation method.

Fully discretized Wavelet Collocation Method

uM = ugt o+ A= fa(uh) 4wy, + 9Dl -1 <GS
wj(0) = go(t") (!
uj(L) =aqi(t")

Wiz =2) =fz=q)

where 1 <k < L—1forj=—1;—-1<k<n;-2 forj>0andt" = nAtis the time

[}
<N
~—

station and At is the time step.

Adaptive Choice of Collocation Points

a

In equations (5.2) and (5.4), uy(z) and f(uy(z)) are expressed using the full set of
collocation points {xﬁ’)} As discussed in the remark after Theorem 3 of Section 3, most
of the wavelet expansion coefficients 1, for large j can be ignored within a given tolerance
€. So we can dynamically adjust the number and logations of the collocation points used in
the wavelet expansions, thus reducing significantly the cost of the scheme while providing
enough resolution in the regions where solution varies much. We can achieve this adaptivity
in the following two ways.

Deleting Collocation Points

Let € > 0 be a prescribed tolerance and j 20, £ = {(¢) = min(3, —loge/ log a).

Step 1. First we locate the range for the index k,
(k;,l;),--',(k:n,l:n),m:m(j,e) ] (5-6)

such that

lajul <€,  ki<k<Ei=1,--,m (5.7)

26

Ty |

TSI oM L 0 gk w1y

L TR |

[T T

[T AR LU TER TR TN IR T AT



Step 2. Following Theorem 3 and 4, we can ignore i, in u;(z) in (5.2) for &; < k <

l,-;i =1,---,mki=ki+{+3,l; =1 — £ — 3, namely we redefine u;(r) as

uj(x) == > @k sk()

—-1<k<n;=2,kEX,
where X; = Uy cicm ki, Li]-

Step 3. The new collocation points and unknowns will be

(Y ug(e) k=1, L= 1ifj = =I;k € {~1,---,n; — 2)\K}.

Increasing Level of Wavelet Space.

Let ¢ > 0 again be some prescribed tolerance, and if
maz|i] | > € (5.8)

where subscript n indicating the solution at time ¢ = ¢*, then we can increase the number

of wavelet spaces W; in the expansion for the numerical solution u;(z) in (5.2), say, up to
W, J' > J.
Step 1 At t = t™ if condition (5.8) is satisfied, let J' > J and define a new solution vector

a7 = (0D, u@ o u) QD L )T

where for J +1 < j < J’, u® = {Pu(z)} 2.
Step 2 Use @1}, on the right hand side of scheme (5.5) to advance the solution to time
step £"*! and obtain solution uj}'. Then, v’ (z) = ?J:uj EVodWod- - @ W, will be

the new numerical solution which yields better approximation to the exact solution of (5.1).

6 Numerical Results

CPU Performance of DWT transform

The theoretical estimates of operations for performing the DWT transform in both di-
rection and the computation of derivatives at all collocation points are O(N log N) where N

is the total number of terms in the wavelet expansion (3.10).
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We take the function in (6.1) and define its wavelet interpolation expansion (3.10) for
L =10,J = 2,3,--+,9, the total number of terms (or collocation points) N = PRARY A
are between 79 and 10240. In Figure 5 we plot the CPU time for the performance of DWT
back and forth in both directions (‘o in the Figure) and the computations of derivatives on
all collocation points (‘+’ in the Figure). Also drawn in the Figure is a straight line which

indicates a almost linear growth of the CPU timing up to 10k points.
Adaptive Approzimation of Wavelet Interpolation Ezpansion

We consider function-

( hi(z +1,0.3) if —1<2<-07
0o - if —0.7<z<-05-4
| mz+05,6) if —05-6<z<—05+6
f@) =19, if —054+86<z<0 (6.1)
sin(5rz)hi(z — 0.25,0,25) if0< <05
| ha(5532) if0.5<z<1

where 6 = 0.01 and ki (z,a) is an exponential hat function and hy(z) is a step-like function

and they are defined as

_ " erp(—ot) if|z|<a ‘
ha(2) = { 0 otherwise (6.2)
and
0 fr<0 ]
ho(z) =4 55 o (1 —t)°dt if0<z<] (6.3)
1 otherwise

First we construct the full wavelet interpolation expansion (3.10) Py f(x) for J =6,L =
40, the total number of wavelet functions (or the collocation points N ) N +4 = (2/41L —
N+4=2"1L+3 = 5123 (including four boundary functionsr in I s f(z)). In Figure 6, on
the top we plot the f(z) (solid line) and P, f(z) at non-interpolation points, at the bottom
we have the absolute error in logarithm scale. In Figure 7, we plot the components foeW
and g;(z) € W;,0 < §<6inPsf(z) =Lsf(z)+ fo+go+ - +gs. Wecan see that only

higher frequency part is retained in higher wavelet spaces W, (notice that the scales varies

in different pictures).
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Then, we use the procedure at the end of Section 5 to filter out those coefficients, thus
deleting the corresponding collocation points, fj,k which are less than € in magnitude. In
Figure 8, we take ¢ = 10~° and the number of wavelet functions f; reduced to 289 with the
accuracy of the approximation (bottom curves) within order of ¢. In Figure 9, we plot the
solution at the remaining interpolation points and the expected clustering of the interpolation
points is seen at locations where the function changes more dramatically. In Figure 10, we
plot the magnitude of the wavelet coefficients fj,k,j > —1 one level above another. High
density of the wavelet coefficients reflects the existence of high gradients of the approximated
function. In Figure 11, we take ¢ = 10~ and the number of wavelet functions f; reduced

to 206 with the accuracy of the approximation (bottom curves) within order of e.
Linear Hyperbolic PDE’s

We consider the IVB problem of linear hyperbolic partial differential equation

U+ uy =0, 0<z<1
u(0,) =0 (6.4)
u(z,0) = hy(5)

where § = 0.05 and hy(x) is defined in (6.3).

We apply the collocation method with adaptive choice of the collocation points L =
20,J = 4. Second order Runge-Kutta method is usd for the time derivative. With every
10 iterations we change the number and locations of the collocation points according to the
criteria proposed at the end of Section 5. The cut-off tolerance ¢ = 10~%. The number of
collocation points involved fluctuates around 200 in contrast to the full set collocation count
which is 640 in this case. In Figure 12, we plot the numerical solution (‘+°) against the exact
solution (‘0’) at time ¢ = 0.1. In Figure 13, we plot the errors in logarithm scale (notice the
y-scale starts at -2 which corresponds to an error of 1072). Again, we see the automatically

clustering of the collocation points.

Inviscid Burger Equation
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Finally, we consider the IVB problem of nonlinear hyperbolic partial differential equation

u+(L),=0, -1<z<2
u(0,¢) = given (6.5)
u(z,0) = f()

where
7sin(rz) if —1 <z <1
flz) = { 0 otherwise
In this case, we take L = 10,J = 6. Second order Runge-Kutta method is used for
the time derivative. With every 10 iterations we change the number and locations of the
collocation points according to the criteria proposed at the end of Section 5. The number

of collocation points involved fluctuates around 100 in contrast to the full set collocation

count which is 1280 in this case. The cut-off tolerance ¢ = 10~%. In Figure 14, we plot the
numerical solutions at time ¢ = 0.05,0.1. The numerical scheme automatically puts more

collocation points near the high gradient (x=0) and the derivative discontinuity (x=1).

7 Conclusion

In this paper, we have constructed a fast Discrete Wavelet Transform (DWT) which enables
us to study collocation methods for nonlinear PDE’s. The adaptivity of wavelet approxima-
tion is conveniently implemented through the examination of the wavelet coefficients. The
preliminary tests on the solution of PDE’s indicates such an approach will be important
in large scale computation where the solution develops extremely high gradients in isolated
regions, and uniform mesh is not practical. Such investigations are actually being done for

reacting flows, the results will be reported in a separate paper.
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Appendix

Proof of (3.25). The proof is a straightforward application of Lemma 5. For M; in
(3.9), we have (a3, a3, -, a,) = (=35, — 3, -, =, =), (b1, bay- -+, b,) = (1,1,---,1) and

1307147 14° " 14
(c2y€3,+,60) = (—11—4,—11—4,---, —1—15,—1—13-) where n = n; = 2?L. Therefore, the sequence

{un} in (3.22) satisfies the following relations,

2534
u =0, =1 u=14, uyz=——

o (A1)

and for4 <m<n
Uy = Em(—um—2 + 14um-l) (AQ)

—_ 13 . —- —_ _— .
where ¢,, = 1 if m=mn, ¢, =1 otherwise.
Recursive relation (A.2) is a finite difference of order 2 whose general solution is of the

following form

Um = G (Cl a'm.—3 + C2:Bm_3) (AJ)
where a = 74 v192/2, 8 = 7 — 1/192/2 are the two distinct roots of the quadratic equation
=4z +1=0,

and constant ¢; and ¢, are chosen so equation (A.3) is valid for m = 2, 3.

Therefore,

Upg = O,U1=I

Up = Cm(pa™ ™+ pzﬁm"s), 2<m<n (A.4)

where piy = 255(820 — 1458) > 0, 4y = E5 (140 — B24) > 0.

Similarly, we can show that

Up+1 = O,Un = 1, (AS)

U = Cpomr (1" 4y AT, forl<m<n-1 A.6
+1 4 H
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oIl

and

1
vo = —— (6,074 + 6,677).
ay
where §; = (120!_1—41)& > 0,68, = (1361-41};tz < 0.

Finally, following (3.24) in Lemma 5, we have the following estimates on the inverse of

M;.
Denote ej,1 < 7 < n as
1 ifyj=1
. = % ifj=2
7711 if3<3<n—-1
% if j =n.
Case : 1<jand 1 <j<n—1,2=1
~ (ulan—2—j+”2ﬂn—')—j)
i = —€iCn_; AT
Qij €iCn—j+1 (6la"_4+62ﬂn_4) ( )

So we have

140723 (g + ")

<
|at’J! - 13 Oln_4(51 - 522n_4)
. Maln + /) |
- 13 (6] - 62) o1
o1
= Ko
where z = g <1 and K; = 1.1666.
Case 2: i<jand 1 <j<n—-12<:1<n
~ _ (a4 ﬂzﬁi_s)(ﬂla"_2—j + p2779)
(= —€lneip1Ci ) A8
& W7 €€ J+1c (51an_4 + 52ﬁn—4) ( )

Case 3: 1 <jand j=n,1=1

1
oG5 = —¢€; (61a”’"4 n 62/6"_4) (Ag)

Case 4:2<jand j=n,2<1<n

(e )
. — —p.E . 1
Qi elcl(élan—‘i ¥ 8,8 (A.10)
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case Br i >jand j=1,1<i<n -1

i an—?—i + ﬂzﬂn—‘l—i
(6]011-4 +62ﬂ1z—4) )

O j = —€;Cu_it1

Case6: 1>jand j=1,i=n

I
(6] an—4 + 62ﬂn—4)

aij = —¢j

Case T:i>jand 2<j<n-1,1<1<n—1

(11~ + i B7) (s a2 4 g Br2)

Qij = —€;CiCriy1

(61071—-4 + 62ﬂn—-4)
Case8:1>jand2<j<n-1l,i=n

e (1?3 + py773)
T (81071 4 8,8m-4)

@ ; =

For Cases 2 - 8, we can similarly obtain

K;

s < 5=

2<:1<8

(A.11)

(A.12)

(A.13)

(A.14)

where K; = 1.1726, K5 = 1.1607, K, = 1.1666, K5 = 1.1666, Ks = 1.1607, K7 = 1.1722 and

Kg = 1.1666.
Finally, if we choose K = 1.1726, then

K

ali-il’ - -

lai ;| <

This concludes the proof.
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Figure 1.Interior scaling functions ¢(z) (top) and boundary scaling function ¢;(z).
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Figure 2.Interior wavelet functions ¥(z) (top) and boundary wavelet function ¥s(z).
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Figure 3. Fourier Transformations of ¥(z)
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Figure 5. CPU timing for Performing DWT (both directions) transformation (‘o’) and

computation of derivatives (‘+ +"), solid line - Linear fitting.
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Figure 6. Wavelet approximation of function (6.1) with L = 40,J = 6. Top - Exact
solution (solid line) and approximation (‘o’); Bottom - absolute error in logarithm scale.

Total number of f;; is 5123.
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Figure 8. Same as Figure 6, but with deletion of wavelet coefficient £, whose magmtude
less that € = 10~5. Total number of f;  left is 289.
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Figure 9. Close up of top part of Figure 8, numerical solutions (‘+’) at remaining collo-

cation points against exact solutions (‘0’).
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Figure 10. The magnitude of remaining wavelet coefficient in Figure 8.
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Figure 11. Same as Figure 8, but with ¢ = 10~*. Total number of Fin left is 206.'
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Figure 12. Adaptive collocation solution of linear PDE (6.4) at t = 0.1 with L = 20,J = 4
and error tolerance ¢ = 10~*. Total number of collocation points is around 200.
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Figure 13. Error of numerical solution in Figure 12 in logarithm scale.
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Figure 14.
L =10,J = 6 and error tolerance ¢ = 10°. Total number of collocation points is around

100.

Adaptive collocation solution of non-linear PDE (6.5) at ¢ = 0.05,0.1 with
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